统计与数学学院学术报告—生物医学时空大数据的统计建模

报告题目:生物医学时空大数据的统计建模(Statistical Learning for Spatial-temporal Data in Biomedical Applications)

报告人:Jingyi Zheng,Department of Mathematics and Statistics,Auburn University,USA

主持人:李娜(统计与数学学院副院长 二级教授)

报告地点:舜耕校区4号楼315会议室

报告时间:2023年6月30日(周五)15:00-17:00

主办单位:山东财经大学统计与数学学院

摘要:

Biomedical data science has been an emerging field in recent years. It focuses on the development of novel methodologies to analyze large-scale biomedical datasets in order to advance biomedical science discovery. Spatial-temporal data is one of the most commonly encountered data types not only in biomedical fields but also in a variety of disciplines such as agriculture, computer vision, geosciences, and hydroclimatology. In this talk, I will present two types of methods developed for analyzing the spatial-temporal data: data-driven time frequency analysis and a manifold-based framework. The applicability, efficiency, and interpretability of each method will be demonstrated by extensive simulations and real data applications.

报告人简介:

郑婧怡,现任奥本大学数学与统计学院副教授,2019年获得加州大学戴维斯分校统计博士学位。研究集中于数据科学、统计建模和机器学习,包括高维数据分析、时空数据建模、信号和图像处理以及深度学习等研究方向。其研究得到了美国国家科学基金会(NSF)和美国国家卫生研究院(NIH)的多个基金项目资助。