黄朝宝

一、个人信息

黄朝宝,男,中共党员,北京理工大学理学博士(北京应用物理与计算数学研究所联合培养),副教授,硕士生导师,山东省高校优秀青创团队带头人,入选山东财经大学优秀青年人才支持计划。主要研究方向:分数阶偏微分方程数值解和流体力学方程的高效高精度数值算法。

研究生招生专业:数学,Email:huangcb@sdufe.edu.cn。

二、教育和工作经历

2006.09-2010.07 郑州大学数学与应用数学专业毕业,获学士学位;

2010.09-2013.07 郑州大学计算数学专业毕业,获硕士学位;

2013.09-2016.07 北京理工大学(北京应用物理与计算数学研究所联合培养)计算数学专业毕业,获博士学位;

2016.11-2019.08 北京计算科学研究中心博士后;

2019.09-至今 山东财经大学副教授。

三、发表主要论文

[1] Chaobao Huang, Na An, Xijun Yu,Hu Chen*, Pointwise-in-time error analysis of the corrected L1 scheme for a time-fractional sine-Gordon equation, Communications in Nonlinear Science and Numerical Simulation, 2025, 140:108370.

[2] Chaobao Huang, Na An,Hu Chen*, Xijun Yu,$\alpha$-Robust Error Analysis of Two Nonuniform Schemes for Subdiffusion Equations with Variable-Order Derivatives, Journal of Scientific Computing, 2023, 97: 43.

[3] Chaobao Huang*, Na An, Xijun Yu, Unconditional energy dissipation law and optimal errorestimate of fast L1 schemes for a time-fractional Cahn–Hilliardproblem,Communications in Nonlinear Science andNumerical Simulation, 2023, 124: 109300.

[4] ChaobaoHuang,Na An, Hu Chen*, Optimal pointwise-in-time error analysis of a mixed finite element methodfor a multi-term time-fractional fourth-order equation, Computers and Mathematics with Applications, 2023, 135: 149-156.

[5] Chaobao Huang, Hu Chen*, Superconvergence analysis of finite element methods for the

variable-order subdiffusion equation with weakly singular solutions, Applied Mathematics Letters, 2023, 139: 108559.

[6] Chaobao Huang, Na An, Hu Chen*, Local H1-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation, Applied Numerical Mathematics, 2022, 173: 211-221.

[7] Chaobao Huang, Martin Stynes*, A Sharp alpha-Robust $L^\infty (H^1)$ Error Bound for a Time-Fractional Allen-Cahn Problem Discretised by the Alikhanov $L2-1_\sigma$ Scheme and a Standard FEM, Journal of Scientific Computing, 2022, 91: 2.

[8] Chaobao Huang, Hu Chen*, Na An, Beta-robust superconvergent analysis of a finite element method for the distributed order time-fractional diffusion equation, Journal of Scientific Computing, 2022, 90: 44.

[9] ChaobaoHuang,Martin Stynes*, Hu Chen, An alpha-robust finite element method for a multi-term time-fractional diffusion problem,JournalofComputational Applied Mathematics, 2021, 389: 113334.

[10] Chaobao Huang, Martin Stynes*, Alpha-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation, Numerical Algorithms, 2021, 87: 1749-1766.

[11]Chaobao Huang, Martin Stynes*,Optimal H1 spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation, Advancesin Computational Mathematics, 2020, 46 (4):63.

[12] Chaobao Huang, Martin Stynes*, Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, Journal of Scientific Computing, 2020, 82 (1): 10.

[13] Chaobao Huang, Martin Stynes*, Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation, Journal of Computational Applied Mathematics, 2020, 367:112435.

[14] Chaobao Huang, Na An*, Xijun Yu, A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient, Applied Numerical Mathematics, 2020, 151: 367-379.

[15] Chaobao Huang, Martin Stynes*,Error analysis of a finite element method with GMMP temporal discretisation for a time-fractional diffusion equation,Computers and Mathematics with Applications, 2020, 79(9): 2784-2794.

[16] Chaobao Huang, Xiaohui Liu, Xiangyun Meng, Martin Stynes*, Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial boundary value problem, Computational Methods in Applied Mathematics, 2020,20(4):815-825.

[17] Chaobao Huang*, Na An, Xijun Yu,A direct discontinuous Galerkin method for time-fractional diffusion equation with discontinuous diffusive coefficient,Complex Variables and Elliptic Equations, 2020,9:1445-1461.

[18] Chaobao Huang, Martin Stynes*, Superconvergence of the direct discontinuous Galerkin method for a time-fractional initial-boundary value problem, Numerical Methods Partial Differential Equations, 2019, 35(6): 2076-2090.

[19] Chaobao Huang, Martin Stynes*, A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition, Applied Numerical Mathematics, 2019, 135:15–29.

[20] Chaobao Huang, Martin Stynes*, Na An,Optimal$L^\infty(L^2)$error analysis ofa direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem,BIT Numerical Mathematics, 2018, 58(3): 661-690.

[21] Chaobao Huang*, Na An, Xijun Yu, A fully discrete direct discontinuous Galerkin Method for the fractional diffusion-wave equation, Applicable Analysis, 2018, 97(4): 659-675.

[22] Chaobao Huang, Xijun Yu*, Cheng Wang, Zhenzhen Li, and Na An, A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation, Applied Mathematics and Computation, 2015, 264: 483-492.

[23] Jincheng Ren, Chaobao Huang*, Na An, Direct discontinuous Galerkin method for solving nonlinear time fractional diffusion equation with weak singularity solution, Applied Mathematics Letters, 2020, 102: 106111.

[24] Na An, Chaobao Huang*, Xijun Yu,Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution, Discrete and Continuous Dynamical Systems Series-B , 2020, 25(1): 321-334.

[25] Na An, Chaobao Huang*, Xijun Yu, Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation, Applied Mathematics and Computation, 2019, 349: 148-157.

四、主持及参与的课题

1.国家自然科学基金青年项目,分数阶对流扩散模型的奇异性分析及高精度有限元算法, 2022/01-2024/12, 在研, 主持

2.山东省高等学校青创团队,反常扩散问题的数值模拟创新团队,2023/01-2025/12,在研,主持

3.山东省自然科学基金青年项目,分数阶对流扩散模型边界层的存在性及高精度有限元算法研究, 2021/01-2023/12,结题, 主持

4.国家自然科学基金面上项目,Volterra积分方程中振荡模型和变阶奇异模型的新型谱方法, 2022/01-2025/12, 在研, 参与

5.山东省自然科学基金面上项目,高维分数阶扩散模型的混合有限元数值模拟及快速算法,2023/01-2025/12,在研,参与

6.国家自然科学基金面上项目,辐射流体力学ALE间断有限元方法研究与软件研制,2016/01-2019/12,已结题,参与。