报告地点:舜耕校区4号楼511会议室
报告时间:2025年6月12日(星期四)14:00—17:30
主办单位:山东财经大学统计与数学学院、可信人工智能实验室
协办单位:科研处,黄河流域生态统计协同创新中心、现代统计交叉科学重点实验室、统计学博士后科研流动站
一、青年教师工作论文报告
报告题目 |
报告人 |
点评人 |
Optimal weighted Fréchet random forest for random objects with Euclidean predictors |
于渊 |
方匡南 |
基于广义嵌入定理的时间序列预测 |
汪引 |
|
Off-Policy Evaluation in Reinforcement Learning with Nonstationary and Dependent Environments |
王纬 |
|
主持人:王纬 |
||
报告人15分钟,点评、自由讨论5分钟 |
二、特邀专家报告
报告题目:基于个性化联邦学习的金融信用风险测度
报告人:方匡南 教授 (厦门大学)
报告人简介:方匡南,厦门大学经济学院统计学与数据科学系教授、博士生导师、耶鲁大学博士后,入选了国家级高层次青年人才、福建省高层次人才A类等。兼任全国工业统计教学研究会副会长、中国商业统计学会市场调查与教学研究分会副会长、中国现场统计研究会大数据统计分会副理事长、《统计研究》、《数理统计与管理》编委等。主要研究方向为经济管理统计、统计机器学习、金融风险管理等。共发表学术论文100多篇,其中在统计学和数据科学期刊Journal of the American Statistical Association,Journal of Machine Learning Research, Biometrics, Statistica Sinica, Bioinformatics, Journal of Computational and Graphical Statistics等发表论文50多篇,在经济管理期刊Journal of Econometrics, Journal of Business & Economic Statistics, INFORMS Journal on Computing (UTD24), International Journal of Forecasting,《经济研究》《统计研究》《管理科学学报》《数量经济技术经济研究》《世界经济》等发表论文50多篇。多篇论文被中央编译局、改革论坛网、人大复印资料等全文转载。多份研究成果被中办、省委办等采用或获领导批示。著有学术专著和教材等6部。主持了国家社科基金重大项目1项,国家自然科学基金项目4项,企事业横向课题30多项。获省部级以上科研成果奖9项,其中一等奖2项,二等奖2项。
摘要: Customer records include only customers in default (positive samples) and rejected customers (unlabeled samples), or positive and unlabeled (PU) data, which is a common scenario in emerging financial institutions. However, building credit scoring models using multiple small sample PU datasets with high dimensionality poses significant challenges, especially in light of the privacy constraints associated with transferring raw data. To tackle these challenges, this paper introduces a novel methodology called Personalized federated PU learning. This approach utilizes a fused penalty function to automatically divide coefficients into multiple clusters, while an efficient proximal gradient descent algorithm is introduced for model training, relying solely on gradients from local servers. Theoretical analysis establishes the oracle property of our proposed estimator. The simulation results show that, in terms of variable selection, parameter estimation, and prediction performance, our method is close to the Oracle estimator and outperforms the other alternatives. Empirical results indicate that our method can improve prediction performance and facilitate the identification of heterogeneity across datasets.